Exploiting cAMP signaling in Mycobacterium tuberculosis for drug discovery.

Journal:
Trends in microbiology, Volume: 32, Issue: 9
Published:
September 14, 2024
PMID:
38360432
Authors:
Dipak Kathayat D, Brian C VanderVen BC
Abstract:

Mycobacterium tuberculosis (Mtb) replicates within host macrophages by adapting to the stressful and nutritionally constrained environments in these cells. Exploiting these adaptations for drug discovery has revealed that perturbing cAMP signaling can restrict Mtb growth in macrophages. Specifically, compounds that agonize or stimulate the bacterial enzyme, Rv1625c/Cya, induce cAMP synthesis and this interferes with the ability of Mtb to metabolize cholesterol. In murine tuberculosis (TB) infection models, Rv1625c/Cya agonists contribute to reducing relapse and shortening combination treatments, highlighting the therapeutic potential for this class of compounds. More recently, cAMP signaling has been implicated in regulating fatty acid utilization by Mtb. Thus, a new model is beginning to emerge in which cAMP regulates the utilization of host lipids by Mtb during infection, and this could provide new targets for TB drug development. Here, we summarize the current understanding of cAMP signaling in Mtb with a focus on our understanding of how cAMP signaling impacts Mtb physiology during infection. We also discuss additional cAMP-related drug targets in Mtb and other bacterial pathogens that may have therapeutic potential.


Courtesy of the U.S. National Library of Medicine