Understanding the distribution patterns of antibiotics at the site of infection is paramount to selecting adequate drug regimens and developing new antibiotics. Tuberculosis (TB) lung lesions are made of various immune cell types, some of which harbor persistent forms of the pathogen, . By combining high resolution MALDI MSI with…
Here we demonstrate that aerosols of host directed therapies [HDT] administered during a chronic Mycobacterium tuberculosis (Mtb) infection have bactericidal effect. The pulmonary bacterial load of C57BL/6 mice chronically infected with Mtb was reduced by 1.7 and 0.6 logCFU after two weeks of treatment via aerosol delivery with ST3-H2A2, [a…
Tuberculosis now ranks as the leading cause of death in the world due to a single infectious agent. Current standard of care treatment can achieve very high cure rates for drug-sensitive disease but requires a 6-month duration of chemotherapy. Drug-resistant disease requires significantly longer treatment durations with drugs associated with…
β-Lactams represent perhaps the most important class of antibiotics yet discovered. However, despite many years of active research, none of the currently approved drugs in this class combine oral activity with long duration of action. Recent developments suggest that new β-lactam antibiotics with such a profile would have utility in…
The World Health Organization recommends drug-susceptibility testing of Mycobacterium tuberculosis complex for all patients with tuberculosis to guide treatment decisions and improve outcomes. Whether DNA sequencing can be used to accurately predict profiles of susceptibility to first-line antituberculosis drugs has not been clear.
Foam cells are lipid-laden macrophages that contribute to the inflammation and tissue damage associated with many chronic inflammatory disorders. Although foam cell biogenesis has been extensively studied in atherosclerosis, how these cells form during a chronic infectious disease such as tuberculosis is unknown. Here we report that, unlike the cholesterol-laden…
The enhanced permeability and retention (EPR) effect is the only described mechanism enabling nanoparticles (NPs) flowing in blood to reach tumors by a passive targeting mechanism. Here, using the transparent zebrafish model infected with Mycobacterium marinum we show that an EPR-like process also occurs allowing different types of NPs to…