Publications

Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis.

Date Published: December 4, 2013
New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of…

A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence.

Date Published: November 19, 2013
Antibacterial drug development suffers from a paucity of targets whose inhibition kills replicating and nonreplicating bacteria. The latter include phenotypically dormant cells, known as persisters, which are tolerant to many antibiotics and often contribute to failure in the treatment of chronic infections. This is nowhere more apparent than in tuberculosis…

A high-throughput screen against pantothenate synthetase (PanC) identifies 3-biphenyl-4-cyanopyrrole-2-carboxylic acids as a new class of inhibitor with activity against Mycobacterium tuberculosis.

Date Published: November 7, 2013
The enzyme pantothenate synthetase, PanC, is an attractive drug target in Mycobacterium tuberculosis. It is essential for the in vitro growth of M. tuberculosis and for survival of the bacteria in the mouse model of infection. PanC is absent from mammals. We developed an enzyme-based assay to identify inhibitors of…

Multidrug-resistant tuberculosis in panama is driven by clonal expansion of a multidrug-resistant Mycobacterium tuberculosis strain related to the KZN extensively drug-resistant M. tuberculosis strain from South Africa.

Date Published: October 24, 2013
Multidrug-resistant tuberculosis (MDR-TB) is a significant health problem in Panama. The extent to which such cases are the result of primary or acquired resistance and the strain families involved are unknown. We performed whole-genome sequencing of a collection of 66 clinical MDR isolates, along with 31 drug-susceptible isolates, that were…

Perturbation of cytochrome c maturation reveals adaptability of the respiratory chain in Mycobacterium tuberculosis.

Date Published: September 17, 2013
Mycobacterium tuberculosis depends on aerobic respiration for growth and utilizes an aa3-type cytochrome c oxidase for terminal electron transfer. Cytochrome c maturation in bacteria requires covalent attachment of heme to apocytochrome c, which occurs outside the cytoplasmic membrane. We demonstrate that in M. tuberculosis the thioredoxin-like protein Rv3673c, which we…

A medicinal chemists’ guide to the unique difficulties of lead optimization for tuberculosis.

Date Published: September 1, 2013
Tuberculosis is a bacterial disease that predominantly affects the lungs and results in extensive tissue pathology. This pathology contributes to the complexity of drug development as it presents discrete microenvironments within which the bacterium resides, often under conditions where replication is limited and intrinsic drug susceptibility is low. This consolidated…

Efficacy and safety of metronidazole for pulmonary multidrug-resistant tuberculosis.

Date Published: August 3, 2013
Pulmonary lesions from active tuberculosis patients are thought to contain persistent, nonreplicating bacilli that arise from hypoxic stress. Metronidazole, approved for anaerobic infections, has antituberculosis activity against anoxic bacilli in vitro and in some animal models and may target persistent, nonreplicating bacilli. In this double-blind, placebo-controlled trial, pulmonary multidrug-resistant tuberculosis…
Courtesy of the U.S. National Library of Medicine