Publications

GSK2556286 Is a Novel Antitubercular Drug Candidate Effective with the Potential To Shorten Tuberculosis Treatment.

Date Published: June 21, 2022
As a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC] = 0.07 μM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance…

Drug development challenges in nontuberculous mycobacterial lung disease: TB to the rescue.

Date Published: June 6, 2022
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is treated with multiple repurposed drugs. Chemotherapy is long and often toxic, includes parenteral drugs, and suffers from poor cure rates. There is an urgent need for more efficacious, tolerated, and oral antibiotics optimized towards the treatment of NTM-PD, adapted to the spectrum of disease.

Predictive Modeling to Study the Treatment-Shortening Potential of Novel Tuberculosis Drug Regimens, Toward Bundling of Preclinical Data.

Date Published: June 1, 2022
Given the persistently high global burden of tuberculosis, effective and shorter treatment options are needed. We explored the relationship between relapse and treatment length as well as interregimen differences for 2 novel antituberculosis drug regimens using a mouse model of tuberculosis infection and mathematical modeling.

Drug concentration at the site of disease in children with pulmonary tuberculosis.

Date Published: May 29, 2022
Current TB treatment for children is not optimized to provide adequate drug levels in TB lesions. Dose optimization of first-line antituberculosis drugs to increase exposure at the site of disease could facilitate more optimal treatment and future treatment-shortening strategies across the disease spectrum in children with pulmonary TB.

Identification of cell wall synthesis inhibitors active against Mycobacterium tuberculosis by competitive activity-based protein profiling.

Date Published: May 19, 2022
The identification and validation of a small molecule’s targets is a major bottleneck in the discovery process for tuberculosis antibiotics. Activity-based protein profiling (ABPP) is an efficient tool for determining a small molecule’s targets within complex proteomes. However, how target inhibition relates to biological activity is often left unexplored. Here,…

CinA mediates multidrug tolerance in Mycobacterium tuberculosis.

Date Published: April 22, 2022
The ability of Mycobacterium tuberculosis (Mtb) to resist and tolerate antibiotics complicates the development of improved tuberculosis (TB) chemotherapies. Here we define the Mtb protein CinA as a major determinant of drug tolerance and as a potential target to shorten TB chemotherapy. By reducing the fraction of drug-tolerant persisters, genetic…

Serial measurement of M. tuberculosis in blood from critically-ill patients with HIV-associated tuberculosis.

Date Published: April 21, 2022
Despite being highly prevalent in hospitalised patients with severe HIV-associated tuberculosis (TB) and sepsis, little is known about the mycobacteriology of Mycobacterium tuberculosis bloodstream infection (MTBBSI). We developed methods to serially measure bacillary load in blood and used these to characterise MTBBSI response to anti-TB therapy (ATT) and relationship with…

Novel Regimens of Bedaquiline-Pyrazinamide Combined with Moxifloxacin, Rifabutin, Delamanid and/or OPC-167832 in Murine Tuberculosis Models.

Date Published: April 19, 2022
A recent landmark trial showed a 4-month regimen of rifapentine, pyrazinamide, moxifloxacin, and isoniazid (PZMH) to be noninferior to the 6-month standard of care. Here, two murine models of tuberculosis were used to test whether novel regimens replacing rifapentine and isoniazid with bedaquiline and another drug would maintain or increase…
Courtesy of the U.S. National Library of Medicine